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THE N=2 SUSY ALGEBRA

We would now like to extend this theory of 4-
component complex spinors to a supermultiplet of
�elds which furnish a representation of the standard
N=2 SUSY algebra. In the 4-component notation of
Sohnius [3] the relevant parts of the N=2 algebra are:

fQi; Qjg = 2Æij
�P� + 2iÆijZ ;

[Qi; P�] = 0 ; (5)

where the Qi, i=1, 2, are symplectic Majorana spinor su-
percharges, and Z is the (antihermitian) central charge
operator, which commutes with all of the other gener-
ators of the algebra. The supercharges form a doublet
under the SU (2) R symmetry of N=2 SUSY; the index
i is raised and lowered with the two-dimensional Levi-
Civita tensors �ij=�ij. In our derivation we will need a
number of identities for bilinears of symplectic Majorana
spinors:

��i�i = �(��i�i)y = ��i�
i = ���i�i ;

��i��i = �(��i��i)y = ��i
��i = ���i��i ;

��i�
j � ��i�

j = Æji
��k�

k ;
��i

��j � ��i
��j = Æji

��k
��k : (6)

Let Ai(x) denote a doublet of complex scalar �elds,
and  (x) a 4-component complex fermion �eld. We want
these �elds to form an N=2 hypermultiplet, i.e., to fur-
nish a representation of the algebra (5). The fundamental
relation between the �elds is

[Qi; Aj(x)] = �i
p
2Æij  (x) : (7)

one additional input is required:

[Z;Ai(x)] = Fi ; (8)

where Fi(x) is a doublet of complex bosonic auxiliary
�elds; we will specify the precise form of Fi(x) later.
Expressions (7) and (8), together with the algebra (5),

the Jacobi identities, and the identities (6), now imply:

fQi;  g =
p
2i�[P�; Ai]�

p
2Fi ;

[Z; ] = �i� [P�;  ] = 6@ ;
[Qi; Fj] = �i

p
2Æij [Z; ] ;

[Z;Fi] = �[P�; [P�; Ai]] = @�@
�Ai : (9)

These relations de�ne a set of hypermultiplet �elds
Ai(x),  (x), and Fi(x) which form a representation
of N=2 SUSY. These relations determine uniquely the
equations of motion for the dynamical �elds Ai(x) and
 (x), once we specify the auxiliary �elds Fi(x). If e.g.

we write

Fi(x) = �imdAi ; (10)

then (8) combined with (9) implies that the Ai(x) satisfy
the Klein-Gordon equation, while (7) combined with (9)
implies that  (x) obeys the Dirac equation.

SIMPLE EXAMPLE OF HOMEOTIC

SUPERSYMMETRY

We obtain the simplest example of homeotic supersym-
metry by specifying the auxiliary �elds as follows:

Fi(x) = �imdAi(x)� mh

�

Z
dt0

t� t0
Ai(t

0;x) : (11)

Applying the relations (7-9), we determine the equations
of motion to be:

@�@
�Ai + (m2

d +m2
h)Ai � 2imdmh

�

Z
dt0

t� t0Ai(t
0;x) = 0;

i6@ �md +
im

�

Z
dt0

t� t0
 (t0;x) = 0: (12)

The action which reproduces (11), (12) is given by

S =

Z
dt
�
Lkin + Ld + Lh + Lyh

�
; (13)

where

Lkin =

Z
d3x

�
@�A

yi@�Ai + F yiFi + i � 6@ � ;
Ld = �md

Z
d3x

�
iAyiFi � iF yiAi + �  

�
; (14)

Lh =
imh

�

Z
d3xdt0

t � t0
�
iAyi(t)Fi(t

0)� iF yi(t)Ai(t
0) + � (t) (t0)

�
:

It is easy to check that all four pieces of the action
are separately invariant under the standard N=2 SUSY
transformations of the �elds:

ÆAi =
p
2��i ;

Æ = �i
p
2Fi � i

p
2��i@�Ai ;

ÆFi =
p
2��i6@ : (15)

We can proceed further to construct the conserved su-
percurrent in terms of the component �elds. However
the usual Noether procedure does not yield a conserved
current; this is a generic feature of nonlocal �eld theories,
and was noted in our previous work with regard to the
fermion number current of the homeotic fermion theory.
Let us �rst review that case, in which we employed a
trick of Pauli's construct the conserved fermion number
current:

J� = � � 

+ Æ�0
mh

�

Z t

dt0
Z

dt00

t0 � t00
�
� (t0) (t00) + � (t00) (t0)

�
:

It is easily seen using the fermion equation of motion (12)
that J�(x) is conserved on-shell. Despite its ugly form
in position space, J�(x) reduces to the usual number
current in the creation/annihilation Fock basis.
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In a supersymmetric theory the conserved bosonic current J�(x) must belong to a supermultiplet of conserved cur-
rents. In particular, we can immediately obtain an expression for the supercurrent j�i, by applying the supersymmetry
transformations (15) to the component �elds in (16). The result is:

j�i(x)=
p
2 = � F yi + �� @�A

yi + Æ�0
mh

�

Z t

dt0
Z

dt00

t0 � t00
�
 (t00)F yi(t0) + � (t00)@�A

yi(t0) + (t0 $ t00)
�
: (16)

Using the equations of motion (11), (12), one �nds that
j�i(x) is conserved on-shell. It thus represents the super-
current modulo possible \improvement" terms [3].

MASS SPECTRUM

Both the bosonic and fermionic parts of the action (13)
violate CPT . Let us focus �rst on the bosonic sector.
We can expand the �elds Ai(x) in positive and negative
frequency plane wave solutions of the equations of motion
(12):

Ai =

Z
d3p

(2�)3
(
apip
2!+

e�i!+t+ip�x +
by
pip
2!�

ei!�t�ip�x);

(17)
where

!� �
p
p2 + (md �mh)2 : (18)

We quantize the theory by assuming that api, bpi satisfy
the commutation relations of creation/annihilation oper-
ators. It follows that the general commutator of Ai(x)
with its conjugate �j(x) is given by

[Ai(x);�
j(x0)] =

i

2
Æji

Z
d3p

(2�)3

�(e�i!+(t�t0)+ip�(x�x0)+ ei!�(t�t
0)�ip�(x�x0)):

Thus the equal-time commutator is canonical, but the
general commutator is not. Using (19) we can now verify
that the supercharge extracted from (16) satis�es (7).
Another novel feature appears when we construct the

bosonic part of the hamiltonian in terms of api, bpi. The
canonical hamiltonian is not diagonalized in the basis
de�ned by (18); it is instead diagonalized in the basis
de�ned by

Ai =

Z
d3p

(2�)3
(
apip
2!+

e�i!t+ip�x +
by
pip
2!�

ei!t�ip�x);

(19)
where

! =
q
p2 +m2

d : (20)

In this basis the bosonic hamiltonian is

Hb =

Z
d3x

�
!+a

yi
p
api + !�b

yi
p
bpi

�
; (21)

showing that the CPT conjugate single particle states
have a mass-squared splitting equal to j4mdmhj.
A similar analysis for the fermions diagonalizes the

fermionic part of the hamiltonian in terms of the anti-
commuting Fock operators ~aps, ~bps, where s is the spin
label:

Hf =

Z
d3x

h
!+~a

y
ps~aps + !�~b

y
ps
~bps

i
: (22)

Again the CPT conjugate states have a mass-squared
splitting equal to j4mdmhj.

COMMENTS

It would be interesting to extend the above construc-
tion to produce an interacting theory. A conventional
N=2 hypermultiplet can interact with an N=2 vector
multiplet, or can have self-interactions describing a non-
linear sigma model [11]. For the homeotic case neither
extension appears entirely straightforward.
The homeotic N=2 hypermultiplet has 8 real on-shell

degrees of freedom. We have just seen that half of these
describe a boson-fermion pair with mass jmd+mhj, while
the other half describe a boson-fermion pair with mass
jmd �mhj.
Since an ordinaryN=2 hypermultiplet can be split into

two N=1 chiral multiplets, it is important to ask whether
our homeotic N=2 hypermultiplet is reducible into two
N=1 multiplets. The answer is no. This can be seen by
imposing the Majorana condition on the fermions in (4),
and observing that the homeotic mass term then vanishes
identically. Alternatively, one notes that the usual de-
composition of the hypermultiplet into chiral multiplets
can be written in the Fock basis as

api; bpi; ~aps; ~bps ! (ap�; bp�; ~ap�; ~bp�); ; (23)

obviously in the homeotic case this would mix operators
with di�erent dispersion relations.
The irreducibility of the homeoticN=2 hypermultiplet

is in fact very analogous to the irreducibility of the or-
dinary N=1 chiral multiplet. In this case one �nds the
4 on-shell degrees of freedom consist of two CPT con-
jugate pairs; each pair has one boson and one fermion
state, related by supersymmetry. However it is not pos-
sible to reduce the multiplet, due to the non-existence
of Majorana-Weyl spinors in four dimensions [12]. This
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is the analog of the non-existence of homeotic Majorana
spinors in four dimensions.
As a parting remark, let's inquire how one might at-

tempt to contruct a supermultiplet in which bose-fermi
degeneracy is violated. At the level of the on-shell hamil-
tonian, this does not appear to be particularly diÆcult.
Let H0(m) be a mass term with mass parameter m for a
free supersymmetric hamiltonian containing two species
of fermions, and construct a new hamiltonian de�ned by

H1 = H0(m) + (�1)F1+F2H0(m
0) ; (24)

where F1 and F2 are the fermion number operators for
the two species of fermions. Clearly the single particle
eigenstates of H1 have di�erent masses for bosons and
fermions: the bosons have massm+m0 while the fermions
have mass m�m0. It is easy to see that, acting on single
particle states:

fQ; (�1)F1g = fQ; (�1)F2g = 0 ; (25)

fromwhich it follows that, acting on single particle states:

[Q;H0] = 0) [Q;H1] = 0 ; (26)

and thus supersymmetry is unbroken. The challenge, of
course, is to realize such a scheme in �eld theory.
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